Review of machine learning application in mine blasting

نویسندگان

چکیده

Abstract Mine blasting has adopted machine learning (ML) into its practices with the aims of performance optimization, better decision-making process, and work safety. This study is aimed at reviewing status ML method applications to mine issues. One most important observations this research highlights developed methods such as hybrids/ensembles, outperforming other 61% sample case studies. The first section provides a background on application in mining. Two sections review provide trends utilization input parameters surface underground problems. appraisal reveals an increase hybrid/ensemble or highly for top four blast issues (72%) (45%). studies reviewed indicated through graphical/statistical means continuing hybrids/ensembles’ use mirrored by high output contrasted low rate blasting, under encountered operational conditions applied. Regarding parameters, controllable (blast design geometry) were recognized be steadily used issues, along less involvement from uncontrollable (geological geotechnical parameters). On contrary, slight more than In final paper, offers discussion current state limits where efforts should focused concerning applied, involved, challenges faced. Such levels performances are demand complex mining environment. Persistent research, development employees’ technological skills alongside increased awareness among industry benefits techniques, greatly needed stage. would establish role improving both process overall management.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Mine Blasting on Residential Structures

Blasting is common in the coal industry to remove rock overburden so that the exposed coal can be mechanically excavated. The ground vibrations and air blast produced by blasting are often felt by residents surrounding the mines. There has been a trend for regulatory authorities, especially those concerned with the environment, to impose low limits on blast vibration levels in response to commu...

متن کامل

Application of Machine Learning Approaches in Rainfall-Runoff Modeling (Case Study: Zayandeh_Rood Basin in Iran)

Run off resulted from rainfall is the main way of receiving water in most parts of the World. Therefore, prediction of runoff volume resulted from rainfall is getting more and more important in control, harvesting and management of surface water. In this research a number of machine learning and data mining methods including support vector machines, regression trees (CART algorithm), model tree...

متن کامل

application of brand personality scale in automobile industry: the study of samand’s brand personality dimensions

این تحقیق شخصیت برند سمند را در ایران با استفاده از مدل پنج بعدی آکر (1997) بعنوان یک چهارچوب بطور توصیفی سنجیده است. بنابر این چهارچوب که دراصل در 42 جزء (42 ویزگی شخصیتی) ودر پنج بعد شخصیتی طراحی شده بود ودر کشورها وصنایع مختلف آزموده شده بود, پرسنامه به زبان فارسی ترجمه شده و با استفاده از روشهای ترجمه معکوس و مصاحبه عمیق با 12 متخصص ایرانی به 38 جزء کاهش یافت. و نظرسنجی ای در پنج نمایندگی ا...

15 صفحه اول

Application of Machine Learning Techniques in Aquaculture

In this paper we present applications of different machine learning algorithms in aquaculture. Machine learning algorithms learn models from historical data. In aquaculture historical data are obtained from farm practices, yields, and environmental data sources. Associations between these different variables can be obtained by applying machine learning algorithms to historical data. In this pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arabian Journal of Geosciences

سال: 2023

ISSN: ['1866-7511', '1866-7538']

DOI: https://doi.org/10.1007/s12517-023-11237-z